Function Field Sieve in Characteristic Three

نویسندگان

  • Robert Granger
  • Andrew J. Holt
  • Dan Page
  • Nigel P. Smart
  • Frederik Vercauteren
چکیده

In this paper we investigate the efficiency of the function field sieve to compute discrete logarithms in the finite fields F3n . Motivated by attacks on identity based encryption systems using supersingular elliptic curves, we pay special attention to the case where n is composite. This allows us to represent the function field over different base fields. Practical experiments appear to show that a function field over F3 gives the best results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvements on the Individual Logarithm Computation for Finite Fields with Composite Extension Degrees

The hardness of discrete logarithm problem over finite fields is the foundation of many cryptographic protocols. The state-of-art algorithms for solving the corresponding problem are number field sieve, function field sieve and quasi-polynomial time algorithm when the characteristics of the finite field are medium to large, medium-small and small, respectively. There are mainly three steps in s...

متن کامل

The Function Field Sieve Is Quite Special

In this paper, we describe improvements to the function field sieve (FFS) for the discrete logarithm problem in Fpn , when p is small. Our main contribution is a new way to build the algebraic function fields needed in the algorithm. With this new construction, the heuristic complexity is as good as the complexity of the construction proposed by Adleman and Huang [2], i.e Lpn [1/3, c] = exp((c ...

متن کامل

The Function Field Sieve in the Medium Prime Case

In this paper, we study the application of the function field sieve algorithm for computing discrete logarithms over finite fields of the form Fqn when q is a medium-sized prime power. This approach is an alternative to a recent paper of Granger and Vercauteren for computing discrete logarithms in tori, using efficient torus representations. We show that when q is not too large, a very efficien...

متن کامل

The Multiple Number Field Sieve with Conjugation and Generalized Joux-Lercier Methods

In this paper, we propose two variants of the Number Field Sieve (NFS) to compute discrete logarithms in medium characteristic finite fields. We consider algorithms that combine two ideas, namely the Multiple variant of the Number Field Sieve (MNFS) taking advantage of a large number of number fields in the sieving phase, and two recent polynomial selections for the classical Number Field Sieve...

متن کامل

The Multiple Number Field Sieve for Medium and High Characteristic Finite Fields

In this paper, we study the discrete logarithm problem in medium and high characteristic finite fields. We propose a variant of the Number Field Sieve (NFS) based on numerous number fields. Our improved algorithm computes discrete logarithms in Fpn for the whole range of applicability of NFS and lowers the asymptotic complexity from Lpn(1/3, (128/9)1/3) to Lpn(1/3, (213/36)1/3) in the medium ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004